Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(14): 6453-6464, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526552

RESUMO

Copper-catalyzed electrochemical atom transfer radical addition (eATRA) is a new method for the creation of new C-C bonds under mild conditions. In this work, we have explored the reactivity of an analogous series of N4 macrocyclic CuII complexes as eATRA precatalysts, which are primed by reduction to their monovalent oxidation state. These complexes were fully characterized structurally, spectroscopically, and electrochemically. A spectrum of radical activation reactivity was found across the series [CuI(Me4cyclen)(NCMe)]+ (Me4cyclen = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane), [CuI(Me4cyclam)(NCMe)]+ (Me4cyclam = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), and [CuI(Me2py2clen)(NCMe)]+ (Me2py2clen = 3,7-dimethyl-3,7-diaza-1,5(2,6)-dipyridinacyclo-octaphane). The rate of radical production by [Cu(Me2py2clen)(NCMe)]+ was modest, but rapid radical capture to form the organocopper complex [CuI(Me2py2clen)(CH2CN)] led to a dramatic acceleration in catalysis, greater than seen in any comparable Cu complex, but this led to rapid radical self-termination instead of radical addition.

2.
Org Lett ; 26(14): 2827-2831, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38253345

RESUMO

The first synthesis of the 5-aza[1.0]triblattane skeleton was achieved through a [4 + 2] cycloaddition approach using a suitably protected azetine and cyclopentadiene. A series of azetines were synthesized to explore both stability and suitable N-protection. The key step following cycloaddition utilized a noninitiated protonated aminyl radical cyclization to install the final 5-azatriblattane bond, but it was found to be considerably more unstable than the 6-aza isomer under acidic conditions.

3.
Chemistry ; 30(3): e202303133, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37823679

RESUMO

Homocubane, a highly strained cage hydrocarbon, contains two very different positions for the introduction of a nitrogen atom into the skeleton, e. g., a position 1 exchange results in a tertiary amine whereas position 9 yields a secondary amine. Herein reported is the synthesis of 9-azahomocubane along with associated structural characterization, physical property analysis and chemical reactivity. Not only is 9-azahomocubane readily synthesized, and found to be stable as predicted, the basicity of the secondary amine was observed to be significantly lower than the structurally related azabicyclo[2.2.1]heptane, although similar to 1-azahomocubane.

4.
J Org Chem ; 89(1): 798-803, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38131648

RESUMO

The unusual and sterically constrained amino acid, seco-1-azacubane-2-carboxylic acid, was incorporated into a range of bioactive chemical templates, including enalaprilat, perindoprilat, endomorphin-2 and isoniazid, and subjected to biological testing. The endomorphin-2 derivative displayed increased activity at the δ opioid receptor, but a loss in activity was observed in the other cases, although human normal cell line evaluation suggests limited cytotoxic effects.


Assuntos
Ácidos Carboxílicos , Receptores Opioides mu , Humanos , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Aminoácidos , Linhagem Celular
5.
Org Lett ; 25(43): 7796-7799, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37870401

RESUMO

The proposed structure for the natural product penicitone, which contained a chemically improbable acid chloride functional group, was reassigned to a more probable structure using a combination of chemical knowledge, computer-assisted structure elucidation, and DFT methods.

6.
Inorg Chem ; 62(38): 15575-15583, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37712595

RESUMO

The utility and scope of Cu-catalyzed halogen atom transfer chemistry have been exploited in the fields of atom transfer radical polymerization and atom transfer radical addition, where the metal plays a key role in radical formation and minimizing unwanted side reactions. We have shown that electrochemistry can be employed to modulate the reactivity of the Cu catalyst between its active (CuI) and dormant (CuII) states in a variety of ligand systems. In this work, a macrocyclic pyridinophane ligand (L1) was utilized, which can break the C-Br bond of BrCH2CN to release •CH2CN radicals when in complex with CuI. Moreover, the [CuI(L1)]+ complex can capture the •CH2CN radical to form a new species [CuII(L1)(CH2CN)]+ in situ that, on reduction, exhibits halogen atom transfer reactivity 3 orders of magnitude greater than its parent complex [CuI(L1)]+. This unprecedented rate acceleration has been identified by electrochemistry, successfully reproduced by simulation, and exploited in a Cu-catalyzed bulk electrosynthesis where [CuII(L1)(CH2CN)]+ participates as a radical donor in the atom transfer radical addition of BrCH2CN to a selection of styrenes. The formation of these turbocharged catalysts in situ during electrosynthesis offers a new approach to the Cu-catalyzed organic reaction methodology.

7.
J Org Chem ; 88(18): 12867-12871, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647582

RESUMO

seco-1-Azacubane-2-carboxylic acid, an unusual and sterically constrained amino acid, was found to undergo amide bond formation at both the N- and C-termini using proline based bioactive molecule templates as a concept platform.

8.
J Agric Food Chem ; 71(13): 5117-5126, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36943718

RESUMO

Amidosulfuron (AS) is from the commercial sulfonylurea herbicide family. It is highly effective against dicot broad-leaf weeds. This herbicide targets acetohydroxyacid synthase (AHAS), the first enzyme in the branched chain amino acid biosynthesis pathway. Here, we have determined the crystal structure of AS in complex with wildtype Arabidopsis thaliana AHAS (AtAHAS) and with the resistance mutant, S653T. In both structures, the cofactor, ThDP, is modified to a peracetate adduct, consistent with time-dependent accumulative inhibition. Compared to other AHAS-inhibiting herbicides of the sulfonylurea family, AS lacks a second aromatic ring. The replacement is an aryl sulfonyl group with a reduced number of interactions with the enzyme and relatively low affinity (Ki = 4.2 µM vs low nM when two heteroaromatic rings are present). This study shows that effective herbicides can have a relatively high Ki for plant AHAS but can still be a potent herbicide provided accumulative inhibition also occurs.


Assuntos
Acetolactato Sintase , Arabidopsis , Herbicidas , Arabidopsis/metabolismo , Acetolactato Sintase/química , Herbicidas/química , Compostos de Sulfonilureia/química , Resistência a Herbicidas
9.
Chem Sci ; 14(11): 2821-2825, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937576

RESUMO

Highly strained cage hydrocarbons have long stood as fundamental molecules to explore the limits of chemical stability and reactivity, probe physical properties, and more recently as bioactive molecules and in materials discovery. Interestingly, the nitrogenous congeners have attracted much less attention. Previously absent from the literature, azahomocubanes, offer an opportunity to investigate the effects of a nitrogen atom when incorporated into a highly constrained polycyclic environment. Herein disclosed is the synthesis of 1-azahomocubane, accompanied by comprehensive structural characterization, physical property analysis and chemical reactivity. These data support the conclusion that nitrogen is remarkably well tolerated in a highly strained environment.

10.
J Med Chem ; 66(6): 3746-3784, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36856340

RESUMO

The global "opioid crisis" has placed enormous pressure on the opioid ligand discovery community to produce novel opioid analgesics with superior opioid-related adverse-effect profiles compared with morphine. In this Perspective, the multitargeted opioid ligand strategy for the discovery of opioid analgesics with superior preclinical therapeutic indices relative to morphine is reviewed and discussed. Dual-targeted µ-opioid (MOP)/δ-opioid (DOP) ligands in which the in vitro DOP antagonist potency at least equals that of the MOP agonist activity, and are devoid of DOP or κ-opioid (KOP) agonist activity, are sufficiently promising candidates to warrant further investigation. Dual-targeted MOP/NOP partial agonists have superior preclinical therapeutic indices to morphine and/or fentanyl in nonhuman primates and are also considered promising. Based on the poor preclinical and clinical therapeutic indices of cebranopadol, which is a full agonist at MOP, DOP, and NOP receptors and a partial agonist at the KOP receptor, this pharmacologic template should be avoided.


Assuntos
Analgesia , Analgésicos Opioides , Animais , Analgésicos Opioides/efeitos adversos , Receptores Opioides mu , Receptores Opioides delta , Ligantes , Dor/tratamento farmacológico , Morfina
11.
Inorg Chem ; 62(11): 4662-4671, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36877141

RESUMO

Organocopper(II) reagents are an unexplored frontier of copper catalysis. Despite being proposed as reactive intermediates, an understanding of the stability and reactivity of the CuII-C bond has remained elusive. Two main pathways can be considered for the cleavage mode of a CuII-C bond: homolysis and heterolysis. We recently showed how organocopper(II) reagents can react with alkenes via radical addition, a homolytic pathway. In this work, the decomposition of the complex [CuIILR]+ [L = tris(2- dimethylaminoethyl)amine, Me6tren, R = NCCH2-] in the absence and presence of an initiator (RX, X = Cl, Br) was evaluated. When no initiator was present, first-order CuII-C bond homolysis occurred producing [CuIL]+ and succinonitrile, via radical termination. When an excess of the initiator was present, a subsequent formation of [CuIILX]+ via a second-order reaction was found, which results from the reaction of [CuIL]+ with RX following homolysis. However, when Brønsted acids (R'-OH: R' = H, Me, Ph, PhCO) were present, heterolytic cleavage of the CuII-C bond produced [CuIIL(OR')]+ and MeCN. Kinetic studies were undertaken to obtain the thermal (ΔH⧧, ΔS⧧) and pressure (ΔV⧧) activation parameters and deuterium kinetic isotopic effects, which provided an understanding of the strength of the CuII-C bond and the nature of the transition state for the reactions involved. These results reveal possible reaction pathways for organocopper(II) complexes relevant to their applications as catalysts in C-C bond forming reactions.

12.
J Nat Prod ; 86(3): 490-497, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36795946

RESUMO

Cynanchum viminale subsp. australe, more commonly known as caustic vine, is a leafless succulent that grows in the northern arid zone of Australia. Toxicity toward livestock has been reported for this species, along with use in traditional medicine and its potential anticancer activity. Disclosed herein are novel seco-pregnane aglycones cynavimigenin A (5) and cynaviminoside A (6), together with new pregnane glycosides cynaviminoside B (7) and cynavimigenin B (8). Cynavimigenin B (8) contains an unprecedented 7-oxobicyclo[2.2.1]heptane moiety in the seco-pregnane series, likely arising from a pinacol-type rearrangement. Interestingly, these isolates displayed only limited cytotoxicity in cancer and normal human cell lines, in addition to low activity against acetylcholinesterase and Sarcoptes scabiei bioassays, suggesting that 5-8 are not associated with the reported toxicity of this plant species.


Assuntos
Cáusticos , Cynanchum , Humanos , Acetilcolinesterase , Austrália , Glicosídeos/farmacologia , Pregnanos/farmacologia , Raízes de Plantas
13.
Nat Commun ; 14(1): 828, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788244

RESUMO

Vitamin K is a vital micronutrient implicated in a variety of human diseases. Warfarin, a vitamin K antagonist, is the most commonly prescribed oral anticoagulant. Patients overdosed on warfarin can be rescued by administering high doses of vitamin K because of the existence of a warfarin-resistant vitamin K reductase. Despite the functional discovery of vitamin K reductase over eight decades ago, its identity remained elusive. Here, we report the identification of warfarin-resistant vitamin K reductase using a genome-wide CRISPR-Cas9 knockout screen with a vitamin K-dependent apoptotic reporter cell line. We find that ferroptosis suppressor protein 1 (FSP1), a ubiquinone oxidoreductase, is the enzyme responsible for vitamin K reduction in a warfarin-resistant manner, consistent with a recent discovery by Mishima et al. FSP1 inhibitor that inhibited ubiquinone reduction and thus triggered cancer cell ferroptosis, displays strong inhibition of vitamin K-dependent carboxylation. Intriguingly, dihydroorotate dehydrogenase, another ubiquinone-associated ferroptosis suppressor protein parallel to the function of FSP1, does not support vitamin K-dependent carboxylation. These findings provide new insights into selectively controlling the physiological and pathological processes involving electron transfers mediated by vitamin K and ubiquinone.


Assuntos
Proteínas Reguladoras de Apoptose , NAD(P)H Desidrogenase (Quinona) , Varfarina , Humanos , Anticoagulantes/farmacologia , Sistemas CRISPR-Cas , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Vitamina K/metabolismo , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo , Varfarina/farmacologia , Proteínas Reguladoras de Apoptose/genética
14.
Org Lett ; 25(1): 27-30, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36594869

RESUMO

The first diastereoselective synthesis of trisubstituted cubanes was achieved using a chiral auxiliary. To establish chirality within the cubane skeleton, at least three substituents must be introduced at the appropriate positions. Ready conversion of cubane carboxylic acid to a chiral amide followed by sequential ortho-selective deprotonations and electrophilic trapping afforded the corresponding 1,2,3-trisubstituted cubanes with high diastereoselectivity. This route opens new possibilities for the preparation of enantio-enriched cubanes.


Assuntos
Amidas , Ácidos Carboxílicos , Estrutura Molecular , Estereoisomerismo , Esqueleto
15.
Org Lett ; 24(50): 9290-9295, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36512372

RESUMO

The rhodium(II)-catalyzed reaction of a model alkenyl donor/acceptor N-sulfonyltriazole with a wide selection of furans is reported. This investigation unearthed a range of structurally diverse carbocyclic and ring-opened products, in good to excellent yields. The products obtained are proposed to arise selectively via cyclopropanation or zwitterionic rearrangement pathways, which are highly dependent on both the structural and electronic features of the furan substrate.


Assuntos
Ródio , Ródio/química , Triazóis , Reação de Cicloadição , Catálise , Furanos/química
16.
Foods ; 11(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36360048

RESUMO

6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) has several biological functions. The present study aimed to evaluate the composition of hydroponically grown Tasmanian wasabi (Eutrema japonicum (Miq.) Koidz.) for 6-MSITC in all plant tissues and investigate the influence of wasabi (rhizome and stem blend) in high-carbohydrate, high-fat (H) diet-fed rats. Male Wistar rats were fed either a corn starch (C) or H diet. After the initial 8 weeks, half of the animals on the C and H diets were given 5% (w/w) wasabi powder in their respective diets for an 8-week duration (CW and HW). The control animals received diets without supplementation throughout the 16-week experiment. Our findings demonstrated that wasabi grown under hydroponic conditions contained 6-MSITC in all parts of the plant such as the stem, leaf and flower, as well as the commonly used rhizome, albeit at lower concentrations. Rats treated with wasabi showed reductions in body weight (H, 460.0 ± 9.5; HW, 416.0 ± 3.6 g), fat mass (H, 178 ± 14; HW, 120 ± 23 g), plasma triglycerides (H, 1.7 ± 0.3; HW, 0.9 ± 0.3 mmol/L) and total cholesterol (H, 1.5 ± 0.1; HW, 1.0 ± 0.04 mmol/L), and the plasma activities of aspartate transaminase. Systolic blood pressure and the area under the curve of blood glucose concentration were decreased by wasabi treatment. Thus, wasabi may be a novel alternative treatment to assist in the management of obesity and related metabolic disorders.

17.
Chem Sci ; 13(35): 10506-10511, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277651

RESUMO

Organocopper(ii) complexes are a rarity while organocopper(i) complexes are commonplace in chemical synthesis. In the course of building a strategy to generate organocopper(ii) species utilizing electrochemistry, a method to form compounds with CuII-C bonds was discovered, that demonstrated remarkably potent reactivity towards different functionalized alkenes under catalytic control. The role of the organocopper(ii) complex is to act as a source of masked radicals (in this case ˙CH2CN) that react with an alkene to generate the corresponding γ-halonitrile in good yields through atom transfer radical addition (ATRA) to various alkenes. The organocopper(ii) complexes can be continuously regenerated electrochemically for ATRA (eATRA), which proceeds at room temperature, under low Cu loadings (1-10 mol%) and with the possibility of Cu-catalyst recovery.

18.
Front Plant Sci ; 13: 909073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845697

RESUMO

Herbicides are commonly deployed as the front-line treatment to control infestations of weeds in native ecosystems and among crop plants in agriculture. However, the prevalence of herbicide resistance in many species is a major global challenge. The specificity and effectiveness of herbicides acting on diverse weed species are tightly linked to targeted proteins. The conservation and variance at these sites among different weed species remain largely unexplored. Using novel genome data in a genome-guided approach, 12 common herbicide-target genes and their coded proteins were identified from seven species of Weeds of National Significance in Australia: Alternanthera philoxeroides (alligator weed), Lycium ferocissimum (African boxthorn), Senecio madagascariensis (fireweed), Lantana camara (lantana), Parthenium hysterophorus (parthenium), Cryptostegia grandiflora (rubber vine), and Eichhornia crassipes (water hyacinth). Gene and protein sequences targeted by the acetolactate synthase (ALS) inhibitors and glyphosate were recovered. Compared to structurally resolved homologous proteins as reference, high sequence conservation was observed at the herbicide-target sites in the ALS (target for ALS inhibitors), and in 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (target for glyphosate). Although the sequences are largely conserved in the seven phylogenetically diverse species, mutations observed in the ALS proteins of fireweed and parthenium suggest resistance of these weeds to ALS-inhibiting and other herbicides. These protein sites remain as attractive targets for the development of novel inhibitors and herbicides. This notion is reinforced by the results from the phylogenetic analysis of the 12 proteins, which reveal a largely consistent vertical inheritance in their evolutionary histories. These results demonstrate the utility of high-throughput genome sequencing to rapidly identify and characterize gene targets by computational methods, bypassing the experimental characterization of individual genes. Data generated from this study provide a useful reference for future investigations in herbicide discovery and development.

19.
Bioorg Med Chem ; 69: 116889, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779512

RESUMO

Multiple sclerosis-associated central neuropathic pain (MS-CNP) is difficult to alleviate with clinically used pain-killers and so there is a large unmet medical need for novel treatments for alleviating MS-CNP. Although (R)-alpha lipoic acid (ALA) evoked significant pain relief efficacy in a mouse model of multiple sclerosis-associated central neuropathic pain (MS-CNP), this dietary supplement has poor oral bioavailability due to low gastric stability. Eight ester prodrugs of the R enantiomer of ALA [(R)-ALA] were designed encompassing a range of biocompatible hydrophobic and hydrophilic features and synthesized in an effort to identify a prodrug candidate that was stable at gastric and upper gastrointestinal tract (GIT) pH, and that could be released (hydrolyzed by esterases) in the blood to (R)-ALA immediately after absorption into the portal vein (i.e., highly desirable features for pain relief development). These biocompatible hydrophobic and hydrophilic (R)-ALA pro-dugs underwent comprehensive preliminary screening to reveal PD-ALA4 HCl salt (10) as a promising candidate and PD-ALA 7 (8) could be a viable substitute, utilizing enzyme-free gastric and intestinal stability assessments, LogP evaluations, in vitro plasma stability and caco-2 cell monolayer permeability.


Assuntos
Esclerose Múltipla , Neuralgia , Pró-Fármacos , Ácido Tióctico , Animais , Disponibilidade Biológica , Células CACO-2 , Humanos , Camundongos , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Neuralgia/tratamento farmacológico , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico
20.
Nat Commun ; 13(1): 3368, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690625

RESUMO

Acetohydroxyacid synthase (AHAS) is the target for more than 50 commercial herbicides; first applied to crops in the 1980s. Since then, 197 site-of-action resistance isolates have been identified in weeds, with mutations at P197 and W574 the most prevalent. Consequently, AHAS is at risk of not being a useful target for crop protection. To develop new herbicides, a functional understanding to explain the effect these mutations have on activity is required. Here, we show that these mutations can have two effects (i) to reduce binding affinity of the herbicides and (ii) to abolish time-dependent accumulative inhibition, critical to the exceptional effectiveness of this class of herbicide. In the two mutants, conformational changes occur resulting in a loss of accumulative inhibition by most herbicides. However, bispyribac, a bulky herbicide is able to counteract the detrimental effects of these mutations, explaining why no site-of-action resistance has yet been reported for this herbicide.


Assuntos
Acetolactato Sintase , Herbicidas , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Produtos Agrícolas/metabolismo , Herbicidas/química , Herbicidas/farmacologia , Mutação , Plantas Daninhas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...